Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

.
* Fermilab/BD/TEV

Beams-doc-1276
February 4, 2005
Version 03

Tevatron Beam Position Monitor Front End Software
User’s Guide

DRAFT DRAFT DRAFT

Margaret Votava, Luciano Piccoli, Dehong Zhang, Kurt Biery
Fermilab, Computing Division, CEPA

Abstract

This document is geared to help past developers remember what they did, future
developers to know how to build and distribute the software, commissioners to
understand how to configure a system, and maintainers to help diagnose software
problems. Contact tev-bpm-dagsw@fnal.gov for comments/updates.

1 Overview

This document is intended to be a guide for the front end users of the Tevatron BPM
system. It is meant to help

e developers build system and verify the builds

e commissioners now how install and commission boards and crates
e maintainers diagnose problems

1 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

2 Commissioning

2.1 Crate Controller Configuration

The crate controller in a TBPM house is a Motorola 2400 running vxWorks. Node names
are selected with the convention of tbpm<id> where <id> is a two character identifier of
location in the ring, e.g., tbpma3.

2.1.1 Registration

Generic instructions can be found at:

http://www-bd.fnal.gov/controls/micro_p/rom_install.html.

IP addresses must be obtained through the Acceleration Division networking group.
Before requesting an IP address, you must know the Fermilab ID and Ethernet MAC
address of the board. Once that has been identified, register the board at:

http://www-bdnew.fnal.eov/Netwebrequests/net-connection.asp

Once the IP address is obtained, each host will also need an ACNET address, which
consists of the above node name plus an assigned trunk and node id. Contact Brian
Hendricks to procure a trunk and node id.

2.1.2 Boot Parameters

Boards are currently running VxWorks v5.5. Each crate controller should have the
following boot parameters:

boot device : dcO

processor nunber 0

host name . fecode- bd

file nane . vxwor ks_boot / ker nel / mv2400- 512MB/ vxWor ks- a32- 512
inet on ethernet (e) : 131.225. <xxx>.<yyy>: ffffff00

i net on backpl ane (b)

host inet (h) : 131.225.121. 145

gateway inet (g) : 131. 225. <xxx>. 200

user (u) vxwor ks_boot

ftp password (pw) (blank = use rsh):

flags (f) 0x0

target name (tn) . <nodename>_Ox<t r unki d><nodei d>
startup script (s) : vxworks_boot/ fe/tpnitpnstartup
ot her (o) :

Where <xxx>, <yyy>, <trunkid>, and <nodeid> are obtained in the registration step
above .

Note that this is a custom kernel — it specifically adds the gateway node to the route table
with the following command:

rout eAdd "0.0.0.0", "131.225.<xxx>. 200"

This is done so that all houses can use the same startup script.

2 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

2.1.3 Startup Script

The Tevatron BPM software is designed to autodetect hardware and addresses at run
time, so all BPMs can share the same startup script. The startup script pointed to in the
boot parameters currently contains:

shel | Pronpt Set ("Booting i nconpl ete->")
taskPrioritySet(taskldFigure("tExcTask"),
taskPrioritySet(taskldFigure("tLogTask"), 250)
get target name in 6 characters

t ar get Nane=mal | oc(20)

get host nane(t ar get Nare, 20)

t ar get Nane[6] =0

#rout eAdd ("239.128.1.1","131.225.126.200")

mount NFS file systenms - 1217, 5143 is user vxworks_boot group bdnicrop

topLevel ="vxworks_write/fel/tbpnt

outputDir=nall oc (strlen(topLevel) + strlen(targetNane))
strcpy(outputDir,topLevel)

strcat (out putDir,target Nane)

nf shount ("fecode-bd", "vxworks_boot/nodul e/ PPC604", "/controls")
nf sMount ("fecode-bd", "vxworks_boot/fe", "/fe")

nfsMount ("fecode-bd", outputDir, "/wite")

nf sAut hUni xSet ("fecode-bd", 1217, 5143, 0, 0)

TEMPORARY
nf sMount ("fecode-bd", "vxworks wite/fe/fcctsl", "/witel")
He o ot e m e a

class library to initialize the techno box
Id (1, 1, "vxworks_boot/fe/ rbpm control s/ pntcl assLi b_m/2400-1 astest.o");
nmooc

5.4 libraries

#ld < /controls/libpnttrig-latest.o
#ld < /controls/libssm2.3.0

#ld < /control s/acnet-1.021.0

Id < /controls/libnpoc-3.6.0

5

5 libraries

control s/libpnctrig-2.13.0
controls/libssm2.4.0
control s/acnet-1.026.0
control s/libmoc-3.7.0
/control s/libnooc-3.6.0
/control s/libnooc-latest.o

ANNNANNAN-
—_~——

ACNET_SSM avai | =0

what is this?

Id < /felrfiinst/devlib/VW54/ WME2434/1i bmi scutil. out
bpm stuff

Id < /felechotek_tbpnlibechotek_tbpm out

Warren's ECSG 1R3ADC-PMC |/ O drivers

Id < /felrfiinst/lib/ VW54 WME2434/1i becsglr3adcfermn . out

Ild < /feltbpnllibculite.out

Id < /fel/gbpnilibgbpm out

Id < /fel/tbpnilibtbpm out

- S T R T N N N N N N N E— N

#--- Start things

set the downl oadable file

set_rbf_file ("vxworks_boot/fe/rbpm control s/ pncucd. rbf");
downl oad the techno box; 0 is the instance or slot
pncucd_start (0)

3 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

set the addresses for ucd
pncucd_set _adr (get_al teranmen(0))
pncucd_set _madr (get_al t er amem(0) +0x1000)

initssc (0, calloc(0x10000, 1))
MoocNew()

void ecsg(int fref, int n, int p, int r, int b, int a, int ¢, int d);
request 73.5 Mz and get 73.444444 NMHz
#ecsg(53104696, 504, 8, 40, 63, 0, 3, 3)

cd("/feltbpmini")

ecdr 8l4gcReadSet up(" 53MHzNar r owBand. i ni ", 0);
ecdr 814gcReadSet up(" 53MHzEnsenbl e.ini ", 1);
ecdr 814gcReadSet up(" 53MHzEnsenbl e- debug.ini ", 2);
#ecdr 814gcReadSet up(" r awbDmaD64. i ni ", 3);
#ecdr 814gcReadSet up(" r awbDmaD64. i ni ", 4);
#ecdr 814gcReadSet up(" r awDmaD64. i ni ", 5);
#ecdr 814gcReadSet up(" r awbmaD64. i ni ", 6);
ecdr 814gcReadSet up("rawDmaD64. i ni ", 7);
ecdr 814gcReadSet up("r awDmaD64Long. i ni ", 8);
ecdr 8l14gcReadSet up(“count.ini", 19);

ecdr 814gcShowSet upAl | () ;

FilterSetlndex(0, 23)
FilterSetlndex(2, 23)

#$$$MoocAl ar nScan(1)
MbocDevi ceDownLoad(O)

Clock prescal e val ue

*0xf ef 80020=0x63ce0001
tracelnit 100000, 10, Oxf ef 80100
traceMde 1

traced obal On 0, 25,0

traceOff 1,0,31,0

#traceMbde 2

#traced obal On 0, 31, 2
#traceOFf 1,0,31,2
traced obal O f 17,17,0
traced obal O f 19,19,0
traced obal O f 20, 20,0

#--- Finish up

pronpt = mall oc(30)

strcpy (pronpt,target Nane)
strcat (prompt,":tbpm ")
shel | Pronpt Set (pronpt)
free(pronpt)

free(target Nane)
free(outputDir)

traceQ hersO f

#ecdr 814gcl nstal | (" ECDR- GC814-

FVv2", 0x9000, 0x19000000, 0, "/ confi g/ rcvr_strati x_dual _14b.rbf", 4)
#ecdr 814gcDeno_count ("/wite/ Count _Test _0x9000", 1, 0, 0, 0, 100)
TBPMset Priority ("ucd60Ohz", 40);

TBPMset Priority ("tExcTask", 40);

TBPMset Priority ("tWbTask", 40);

Change the priority of the tShell task
TBPMChangeShel | Priority (50);

#traced obal O f 12,12,0
#traced obal O f 16, 16,0
traced obal O f 15,16,0
bpnStart 500

a_al arnms_enabl e ()

4 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

a_rel oad_data ()

2.1.4 Changing the vxWorks startup script for all houses

The tevatron BPM houses share a common startup script that resides in
nova.fnal.gov:/fecodde-bd/vxworks_boot/fe/tbpm; however, it is maintained in the tbpm
CVS module. If the startup script for all houses need to change, please follow the build
instructions in subsequent section.

Note that we are loading fixed versions of the ACNET/MOQOC libraries. These versions
need to match the versions of ACNET/MOOC header files that are compiled into both
gbpm and tbpm. When reloading a different version of mooc, you will also need to edit
the acnetheaders.h file in both packages and recompile (see build instructions below).

2.1.5 Changing the vxWorks startup script for a particular house

While debugging problems at a specific house, there will sometimes be a need to have a
startup script that is specific to that particular house. Since this is only a temporary state,
there is no need to track the changes. Simply:

nova> cd /fecode-bd/vxworks_boot/fe/tbpm
nova> cp tbpmstartup temp_startup

Edit the temp startup script as necessary, being sure to change the vxworks boot
parameters to use this script. Please remember to reset the boot parameters to use the
canonical script when done.

2.2 Echotek Board Configuration

The current echotek driver supports up to 20 different setup files that are specified in the
startup script. Different configurations are used based on the mode of operation of the
software. See document #860 for a description of the operational modes. In a particular
mode, all echotech modules in a house will use the same setup file, ie there is no
provision for allowing the boards to be configured differently. By convention, these setup
files have an extension of .ini.

Additionally, each board setup file contains another pointer to a file that contains
information regarding a channel setup. Unless you really know what you’re doing, all
channels should be configured with the same file. By convention, the channel setup files
have an extension of .ch. By convention, the <abc>.ini file will read in a channel file
named <abc>.ch.

The driver reads the associated files from the current working directory, so it’s important
to cd to this directory in the vx Works startup script.

Operational Mode Setup file index
Closed orbit 0
Turn X Turn 1
First injection 1

5 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

Raw ADC

N

Closed orbit debug 2

2.3 Timing Module Configuration
2.3.1 Recycler Timing Board

Additional software that needs to be added to the startup script to run the recycler timing
board are:

class library to initialize the techno box

only needed for

Id (1, 1, "vxworks_boot/fe/rbpm control s/ pntcl assLi b_m/2400-1 astest. o0");
void ecsg(int fref, int n, int p, int r, int b, int a, int ¢, int d);
request 73.5 Mz and get 73.444444 Mz

ecsg(53104696, 504, 8, 40, 63, 0, 3, 3)

3 Developing

There are 3 packages that constitute the tbpm software, they are:
e ¢bpm — generic bpm classes
e tbpm — bpm implementation specific to the tevatron
e cchotek tbpm — underlying echotek driver

3.1 Build Environment

The Tevatron BPM software uses the RFI build methodology. Please refer to Beams
Document #1271 for a description of the tools and, for first time users, how to configure
your account on nova.fnal.gov. Following these instructions, please set your work group
to rfiinst. All code is compiled on nova.tnal.gov.

3.2 Build Instructions
All packages are built in a similar fashion

nova-> cd ~/esd/src
nova-> cvs checkout gbpm
nova-> setup gbpm

nova-> cvs update —d
nova-> nmake cl ean

nova- > make

only do once; create if needed
only do this once

H O HH

cvs checkout gbpmif first time

nova- > nake devel opnent # put in devel opnent |ocation

nova- > nmake test # put in test location

nova- > nmake production # put in production location (wll
be installed at next reboot)

Library | ocations are:
nova. f nal . gov: / f ecode- bd/ vxwor ks_boot / f e/ gpm devgpm out # devel oprent

nova. f nal . gov:/ f ecode- bd/ vxwor ks_boot/fe/ gpm' t est gpm out # test
nova. f nal . gov: / f ecode- bd/ vxwor ks_boot/fe/ gpm | i bgpm out # production

There is a similar set of commands to build tbpm and echotek tbpm.

6 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

The Targets

3.3 Unit Tests

The three tbpm packages have unit or module tests associated with them. The unit tests
are designed to verify the core functionality of the module and are designed to be as
standalone as possible. The gbpm and tbpm packages use an underlying software package
called culite, which is a Computing Division maintained product that is built remotely
and then distributed to nova. It is installed in

nova.fnal.gov:/fecode-bd/vxworks boot/fe/culite

Because the unit tests in and of themselves are large, they should not be loaded when
running in a production mode and are meant primarily for release verification. Running
the unit tests for gbpm and tbpm involves the following steps:

1. Build the package with unit tests turned on. Put the result in the “test” library:
a. edit the project Makefile and add ‘-DUNIT _TEST’ to the assignment of
the DEFINES variable
b. ‘make test’

2. Load the unit test software:
a. Create a startup script for unit testing, which includes loading unit test
helper library along with the test libraries just built

ld < /feltbpnlibculite.out

3. Run the Unit tests. Each package has a self-contained unit test which calls all
individual module tests. To run all the unit tests, from the vxworks shell:

vxwor ks- > GBPMUni t Test
vxwor ks- > TBPMUni t Test

4. For reference, the definitions of the CULITE UNIT TEST, CHECK, and other
preprocessor macros can be found in the culite Test.h header file.

It is currently not possible to build the echotek tbpm library without the unit tests. To
run these unit tests, from the vxworks shell:

vxwor ks-> ecdr 8l4gcUni t Test Uni t Test (al6a, setupl ndex)

where al6a is the address of the card to test (one of 0x8000, 0x9000, ..., 0xf000, or 0 to
test all cards) and setuplndex is the setup file index described in section 2.2.

3.3.1 Echotek Driver Unit Tests

All of the testing is contained in the ecdr814gcUnitTestUnitTest function. It requires
Echotek cards to be present in the crate at the requested address(es).

7 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

3.3.2 GBPM Unit Tests

No test requires any more hardware than the crate controller except where otherwise
noted.

void DataEntryUnitTest (int initTrace);

void TestDataEntryUnitTest ();

void PackStrategyUnitTest ();

void TestPackerUnitTest ();

void EventUnitTest ();

void EventListenerUnitTest ();

void EventGeneratorUnitTest ();

void InterruptEventGeneratorUnitTest (int initTrace);

void HardwareInterruptEventGeneratorUnitTest (int initTrace);

void TimeEventGeneratorUnitTest (int initTrace);

void AuxTimeEventGeneratorUnitTest (int initTrace);

void TCLKEventGeneratorUnitTest (); // requires timing board

void AlarmGeneratorUnitTest ();

void DataAcquisitionTaskUnitTest (int initTrace);

void DataBufferUnitTest (int initTrace);

void CircularDataBufferUnitTest (int initTrace = 1);

void TestControlUnitTest (int initTrace);

void TestControlTaskUnitTest (int initTrace);

void AlarmTaskUnitTest (int initTrace);

void ConfigManagerUnitTest (int initTrace);

void PackerUnitTest ();

void ConfigStateChangelListenerUnitTest (int initTrace);

void StateChangeEventGeneratorUnitTest (int initTrace);

void ConfigStateChangeTaskUnitTest (int initTrace);

3.3.3 TBPM Unit Tests

These tests are not currently fully functional. The following tests are available, but only
the first four are called from TBPMUnitTest. And some of the tests may not run if there
is no other hardware in the crate other than the crate controller.

void TBPMClosedOrbitPackerUnitTest (int initTrace);

void TBPMTurnByTurnPackerUnitTest (int initTrace);

void TBPMDiagnosticSystemUnitTest (int initTrace);

void EchoTekPoolUnitTest (int initTrace);

void TBPMControlUnitTest (int initTrace);

void TBPMRawClosedOrbitPackerUnitTest (int initTrace);

void TBPMBufferReadoutUnitTest (int initTrace);

4 Maintaining

How/when to change .ini and .ch files. Tune timing delays.
Not written yet.

5 Diagnostics

Once the system is up and running, how do you start analyzing problems? There are
many diagnostic tools available. Choosing the right one to most expediently analyze the

8 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

problem is a combination of experience and instinct. The following sections describe
various diagnostic information that is available in the tbpm software.

5.1 Software Statistics

The bpm software internally keeps structures that one can peek at through the vxworks
shell. The bpmHelp command will list the most current set of commands that are
available:

fcectsl:tbpm dev> bpnHel p
bpntStart (rate, source, useTCLK, bsyncBase)
Description: Starts up the TBPM system
Paraneters: rate - clock generator rate (in Hz)
source - 0 for EchoTek boards
1 for TestEchoTek(don't use EchoTek board)
useTCLK - 0 for using TCLK decoder
1 for ignoring TCLKs (don't use decoder)
bsyncBase - base address for the bsync decoder

bpnStart Test (rate)
Description: Starts the the TBPM system usi ng no hardware
Paraneters: rate - fast abort frequency (in Hz)

bpmPeek (bpm buffer)
Description: Shows the latest entry of a selected buffer
Parameters: bpm- 0 through 11

buffer - fast abort = 11
- slow abort = 12
- profile =13
- display = 14
- user TCLK = 15
- tht = 16
- inj. tbt = 17
-in. c.o. =18
- diagnostic = 19
- closed orb.= 20

bpmPeekPos (bpm buffer, position, format)
Description: Same as bpnPeek, el enent position can be specified
Paramet ers: position - elenent index wthin the buffer

format - 1: for proton full information

format - 2: for pbar full information

bpmShow ()
Description: Display general systeminformation

bprShowTasks ()
Description: Display status of the data acquisition tasks

bpmShowGenerators ()
Description: Display status of the event generators

bpmShowQueues ()
Description: Display status of event queues

bprmShowBuf fers ()
Description: Display current status/info of systembuffers

bpmshowConfig ()
Description: Display detailed system configuration

bprmShowvbdes ()
Description: Show the |last N nodes of operation of the system

bpmShowTCLK ()
Description: Display the TCLK history

bpmShowAl ar ns (enabl ed)
Description: Show current alarms in the system
Paraneters: enabled - O for enabled al arns

- 1 for all alarns

9 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

bpmCl ear Buf fer s
Description: Cear all buffers in the system

bprmPeekDi ag ()
Description: Display current contents of the diagnostic buffer

bpmDunpBuf f er (bpm buffer)
Description: Display all contents of the buffer for a given bpm
The position/intensities and 1/Q pairs are shown
Parameters: bpm- 0 through 11
buffer - buffer index (see bpnPeek hel p)

---------------- Devel opnent/ Test functions -------------------
bpmvbde (node, turns)
Description: Change systemthe node of operation
Par amet ers: New node of operation
No paraneters or node == 0 for |ist of nodes.
turns - nunber of turns in turn-by-turn node
bpmI'CLK (tcl k)
Description: Generate a TCLK event that is caught by the system
Paraneters: tclk - 0x47: ABORT
0x4D: Tevatron reset - proton injection
0x71: Prepare for beam
0x75: BPMprofile
0x77: Armturn-by-turn neasurenent
0x78: BPM di spl ay
0x100: User TCLK generation

bpmIBT (only in test node)

Description: Generate a turn-by-turn measurement. If in
injection node take an injection turn-by-turn
neasur enent

bpmIBTEvent (tcl k)

Description: Change the TCLK event that arms a turn-by-turn
neasur enent .

Paraneters: tclk - TCLK that will armthe turn-by-turn

bpmChangeConfi g (index, val ue)

Description: Assign a new value to the integer variable at the
gi ven i ndex.

Parameters: index - entry nunber in the config manager to be changed
value - value to be assigned to the entry

5.2 Trace Diagnostics

The Tevatron BPM software packages are using a trace facility to monitor software
behavior. This document is not meant to be a tutorial for that facility - Refer to the output
of the traceHelp command (sample below) for an overview of the trace commands that
are available.

fcctsl: tbpmdev> traceHel p
Trace Facility Help

traceMode(node) Sets the target(s) of the trace nessages.
'node' can be:

0 = tracing is disabled
1 = trace into circular buffer
2 = trace to VxWorks log facility
3 =trace to both
traceModeGet () Returns the current trace node.
tracel nfo() Shows i nformation associated with the

trace facility. Each trace source is
al so shown along with its |evel mask.

traceShow(opts, lines, skip, fd)

Dumps the contents of the trace buffer.
The arguments have the follow ng effects:

10 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

is a bit mask:

s 0, 1:

Rel ative timestanps are shown
Absol ute, but zeroed, tinestanps
Absol ute tinmestanps

do not show trace |evel
show trace |evel
s' can be:
= Display all entries (default)
O herwi se only display the first
"lines' entries
'skip' can be:
0 = Don't skip entries
O herwi se display every 'skip'
entry
'fd'" can be an open file descriptor. If
it is zero, then standard output is used.

N

traceReset () Clears the circular trace buffer.

traceOn(id, lo, hi, f) Turns on the specified | evels of trace
source 'id'. This value can be found
using tracelnfo(). 'lo" and 'hi' define

the range of levels to enable (0 - 31).
f is the "function" (currently -
O=circul ar, 1=l ogMVsg.

tracedf(id, lo, hi, f) Turns off the specified |levels of trace
source 'id'. 'lo" and 'hi' define
the range of levels to disable (0 - 31).
f is sane as above.

traced obal On(l o, hi, f) Li ke traceOn(), but it affects every
trace source.
f is same as above.

traced obal O f(lo, hi, f) Li ke traceOf(), but it affects every
trace source.
f is sane as above.

traceFreezeOn(l o, hi) Enabl es a range of "freeze" levels. If
your code calls traceFreeze(lvl) and the
Ivl'th freeze bit was set, the circular
trace queue is frozen (simlar to calling
traceMbde(0).) tracelnfo() shows the
current freeze nask.

traceFreezeOf (1o, hi) Di sabl es a range of "freeze" |evels.

As a quick overview, we typically use the tracing facility in a circular buffer mode where
all traced processes write into that buffer. The software is exploiting many levels of trace
that can be turned on/off to fine tune which information is stored in the buffer.

As an example, the following use of the traceShow command would display (on standard
output) the most recent 100 entries in the trace buffer without skipping any entries, and

each entry would be shown with an absolute timestamp and its trace level.
traceShow 6, 100, 0, 0

5.3 VME Backplane Diagnostics

Bus analyzers are a powerful tool in understanding what is actually happening on the
backplane. Using a VMETRO xdkjldsf, the following traces where obtained to show vme
timing of typical transfers: ~ xdkjldsf == VBT 320 or VBT321 ?

Missing figures
Figure x. Closed Orbit Measurement

11 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

Figure x. TurnByTurn Measurement

Figure x. First Turn Measurement

5.4 Looking at ACNET variables

From an ACNET console page, select the “ACL Edit/Run” option from the Pgm_ Tools
menu which is located near the top right corner of the page. In the Action section of the
ACL Edit Window, type ‘read <variableName>’ and type <ctrl>-r to run the command.
When the command is run, the ACNET window will split into two parts, the command
source (which you typed) and the output. As an example, ‘read V:PING’ followed by
<ctrl-r> should return a result like “V:PING = 5 ping” in the output pane.

Setting ACNET variables uses the same ACL Edit/Run application, but first you need to
configure your ACNET console to allow variables to be set. This is done from the
Utilities window. Click on the Setting option in the Utilities window and set the value to
one hour. Back on the ACL Edit/Run page, you can now set variable values using
commands of the form ‘set <variableName>=<value>’. For example, to set the value of
V:PING, you could use a command like ‘set V:PING=5" (followed by <ctrl>-r).

6 Test Stand

6.1 Test Crate Modules

Needs completion

7 Appendix: Node name/ACNET addresses

node name ip address ACNET address Location
Fccts0 131.225.126.243 FCC3
Fcctsl 131.225.126.234 | 0x0Obd4 FCC3
TBPMA3 131.225.127.233 | 0x0c2b A3
TBPMB3 131.225.127.228

Need completion

12 2/4/05

Tevatron BPM Front End Software User’s Guide, Version 3, 02/04/05

configuration files

acnet devices

labview board testing code

13 2/4/05

